Colton Stearns

coltongs@stanford.edu • 227 Bowdoin Lane, Stanford, CA

www.linkedin.com/in/colton-stearns

EDUCATION

Stanford University

Candidate for Ph.D. in Computer Science

Massachusetts Institute of Technology

- Bachelor of Science in Computer Science
- GPA: 4.9/5.0
- Relevant Coursework:
 - Applied Theory Machine Learning (Graduate), Machine Learning (Undergrad), Shape Analysis (Graduate), \cap Computer Graphics, Intro to Inference
 - Theory Linear Algebra, Differential Equations, Probability, Discrete Mathematics, Multivariate Calculus 0
 - Computation Design and Analysis of Algorithms, Computer Systems Engineering, Software Construction 0

INDUSTRY EXPERIENCE

Toyota Research Institute

Research Intern

- Researched new methods for 3D object tracking in autonomous vehicles
- Worked with the machine learning research team, spanning interests in simulation, real-time vision, and robotics planning

Second Genome

Research Intern

- Researched machine learning in multi-omics data to predict the efficacy of PD-1 inhibitor drugs on melanoma skin cancer
- Surveyed and reproduced state-of-art methods for feature-cost-efficient-learning (weighted feature selection)
- Built an internal tool that utilizes feature-cost-efficient-learning in gradient boosted tree ensembles and SVMs •

Nvidia

Computer Vision Intern

- Worked on the Camera Localization team tasked with localizing a vehicle to an HD MAP with centimeter accuracy
- Collaborated to analyze, improve, and debug the camera localization algorithm in the production Driveworks SDK
- Gained experience with real time development in C++/CUDA, computational geometry, and probabilistic modeling

Aptiv

Software Systems Intern

- Worked on the HD Mapping Team tasked with integrating map data into highway-autonomous vehicles
- Analyzed HD map latency, throughput, and accuracy bottlenecks; used my findings to help architect HD map data flow
- Gained experience with computational geometry, GNSS + IMU systems, and network communication protocols

RESEARCH EXPERIENCE

The Picower Institute for Learning and Memory

Alzheimer's Undergraduate Researcher

Currently working on the human trials team in the Tsai Laboratory; we are tasked with evaluating the new Alzheimer's • treatment GENUS (Gamma Entrainment Using Sensory Stimuli) in human subjects

September 2020 - TBD

September 2016 - May 2020

June 2021 – August 2021

Los Altos, CA

June 2020 – August 2020

South San Francisco, CA

June 2019 – August 2019

June 2018 – August 2018

Mountain View, CA

Santa Clara, CA

January 2019 – June 2020

Cambridge, MA

• Developed computer vision software to track human compliance during the daily stimulations; my software uses machine learning eye-tracking methods to quantify human engagement with second-by-second granularity

MIT Media Lab: Fluid Interfaces

Augmented Reality Undergraduate Researcher

- Helped research, design, and build an augmented reality app for IOS devices and the Microsoft HoloLens
- Researched and applied constructionist learning techniques to intuitively teach introductory Newtonian physics

Koch Institute for Integrative Cancer Research

Computational Biology Undergraduate Researcher

• Collaborated in developing a Markov Chain Monte Carlo (MCMC) model to infer the rate of cell death, growth, apoptosis, and un-adherence given fluorescent data; observed successful convergence on experimental data

TOY PROJECTS

Term Project - Spline Parameter Estimation

Computer Graphics (6.837)

- Implemented substantial parts of a recent computer graphics paper that uses deep learning to estimate quadratic spline parameters of an image of a letter
- Reproduced the paper's results and verified that its proposed loss function performed as expected

Term Project - Generalizable Non-Rigid Registration

Advanced Topics in Computer Graphics: Shape Analysis (6.838)

- Implemented a research paper advocating multivariate kernel regression as a generalizable means of non-rigid registration
- Identified the paper's shortcomings in large 3D point clouds and presented an analysis on such failings

Term Project – Image Semantic Segmentation for Drivable Areas

Graduate Machine Learning (6.867)

- Developed a model to segment the Berkeley DeepDrive Dataset images into drivable and non-drivable area
- Model made use of a fully convolutional neural network for attribute recognition, a prior distribution to bias pixellocation, and a conditional random field for post processing and smoothing the drivable-area output

PATENTS

20200122738: Vehicle System and Method for Steep Slope Pick-up and Drop-Off Site Avoidances

• Helped architect a vehicle system to alleviate fully autonomous vehicle drop off and pick up in steep-slope terrain

LANGUAGES / SKILLS

Computer Languages *(most to least fluent)* Python, C++, Java, C#, MATLAB, Unity, Julia, LaTex, CUDA (familiar)

Languages

English (first language), Spanish (proficient)

Skills (most to least experienced) Machine Learning, Computational Geometry, Probabilistic Modeling, Machine Vision, Computer Graphics, Software Systems

FUN EXPERIENCES

NCAA Division III Men's Volleyball

Varsity Athlete

• Member of the varsity MIT men's volleyball team; I played outside hitter and libero

September 2016 – October 2019 Cambridge, MA

February 2019 – May 2019 Cambridge, MA

September 2018 – December 2018

September 2019 – December 2019

Cambridge, MA

October 19, 2018

February 2017 – June 2017

October 2017 – April 2018

Cambridge, MA

Cambridge, MA

Cambridge, MA